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Abstract

Despite the impressive feats demonstrated
by Reinforcement Learning (RL), these al-
gorithms have seen little adoption in high-
risk, real-world applications due to current
difficulties in explaining RL agent actions
and building user trust. We present Coun-
terfactual Demonstrations for Explanation
(CODEX), a method that incorporates se-
mantic clustering, which can effectively sum-
marize RL agent behavior in the state-action
space. Experimentation on the MiniGrid and
StarCraft II gaming environments reveals the
semantic clusters retain temporal as well as
entity information, which is reflected in the
constructed summary of agent behavior. Fur-
thermore, clustering the discrete+continuous
game-state latent representations identifies
the most crucial episodic events, demonstrat-
ing a relationship between the latent and se-
mantic spaces. This work contributes to the
growing body of work that strives to unlock
the power of RL for widespread use by lever-
aging and extending techniques from Natural
Language Processing.

1 Introduction

Reinforcement Learning (RL) is a revolution-
ary technology capable of superhuman long-term
decision-making in complex and fast-paced do-
mains (Tesauro, 1992; Mnih et al., 2015; Silver
et al., 2018; Schrittwieser et al., 2020; Vinyals
et al., 2019). Effective RL-enabled systems will
readily outperform the greatest human minds at
most tasks.1However, a major challenge in the field
has been explaining RL agent decisions. This pro-
hibitive limitation is because existing Explainable
Reinforcement Learning (XRL) methods do not

Presented at the International Joint Conference on Artificial
Intelligence (IJCAI) 2023 Workshop on Explainable Artificial
Intelligence (XAI).

Figure 1: Four Rooms and Door Key MiniGrid envi-
ronments. The RL agent (red triangle) is tasked with
autonomously reaching the goal (green square) by ma-
neuvering walls and locked doors.

effectively account for the fact that autonomous
decision-making agents can change future obser-
vations of data based on actions they take or ef-
fectively reason over long-term objectives of the
underlying agent mission. For example, AI AlphaS-
tar competes against top-tier StarCraft II players,
but gaining an understanding of the AI requires ex-
tensive empirical study. Effective XRL approaches
that overcome these limitations are necessary to
unlock the power of RL for widespread use.

One potential approach is to develop text-based
XRL techniques using world models (Hafner et al.,
2020). World models have proven to be extremely
effective as several of the recent top-performing
RL algorithms are world modeling based (Kaiser et
al., 2020; Schrittwieser et al., 2020, 2021; Hafner
et al., 2021). They may be used to show a user:
a) what the RL agent expects is happening after
it makes a decision; and b) what the RL agent ex-
pects would have happened had it made a different
decision. The former is termed a factual and the
latter a counterfactual.

In this paper, we propose a global post-hoc
clustering method for XRL called Counterfactual

1https://www.nitrd.gov/pubs/National-A
I-RD-Strategy-2019.pdf
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Demonstrations for Explanation (CODEX) as a
step towards understanding factuals and counter-
factuals. CODEX automatically produces natu-
ral language episode tags that describe the agent
states and actions while interacting with MiniGrid
(Chevalier-Boisvert et al., 2018) and StarCraft II
(Vinyals et al., 2017) environments. Figure 1 shows
two MiniGrid environments in which the agent
must navigate walls and locked doors to reach the
goal.

CODEX offers several benefits: 1) the vector rep-
resentations are densely clustered with very good
separation, even when the tags are short (∼5-6
words) with minimal semantic distinctiveness; 2)
the centroid conditioned cluster topics are fully
extractive, avoiding the issue of hallucinations ob-
served in SOTA summarization models (Kryściński
et al., 2019; Falke et al., 2019); 3) the semantic clus-
ters retain temporal as well as entity information,
which in turn is reflected in the constructed sum-
mary of agent behavior in the state-action space;
4) two user-defined parameters provide more fine-
grained and detailed summaries, revealing tags that
occur rarely and may be important; and 5) clus-
tering discrete+continuous game-state latent repre-
sentations visually reveals the most crucial episode
tags, demonstrating a relationship between the la-
tent and semantic spaces.

By summarizing world model based factual and
counterfactual examples while combining them
with latent cluster visualizations, our method en-
ables an intuitive and broader understanding of an
RL agent’s behavior. Our code is publicly avail-
able.2

2 Related Work

Explainability in Reinforcement Learning.
While Explainable Artificial Intelligence (XAI) has
established and widely accepted techniques such
as the SHAP library (Lundberg and Lee, 2017)
and its encompassed methods (Ribeiro et al., 2016;
Štrumbelj and Kononenko, 2014; Shrikumar et al.,
2017; Datta et al., 2016; Bach et al., 2015; Lipovet-
sky and Conklin, 2001), XRL research has not yet
yielded such well-regarded methods.

To aid in the development of new XRL ap-
proaches, XRL researchers have created useful tax-
onomies to describe and compare methods. There
is a 2-step taxonomy largely established from

2https://github.com/ainfosec/codex

(Puiutta and Veith, 2020), based upon XAI taxon-
omy (Adadi and Berrada, 2018), that incorporates
ideas from (Heuillet et al., 2021), based upon XAI
taxonomy (Arrieta et al., 2020): scope and extrac-
tion type. Explanation scope can be either local or
global while explanation extraction types are either
intrinsic or post-hoc. Local explanations provide
insight into specific predictions while global expla-
nations provide insight into overall model structure,
or logic.

Several recent works are related to, yet distinct
from, CODEX. van der Waa et al. (2018) leverages
a policy simulation and a translation of states and
actions to a description that is easier to understand
for human users to enable an RL agent to explain its
behavior with contrastive explanations and in terms
of the expected consequences of state transitions
and outcomes. This work discerns interpretable
state changes by applying classification models to
the state representation. In contrast, CODEX lever-
ages decoded visual representations of states to
identify semantic properties.

Nguyen et al. leverage human annotations of
interpretations of agent behavior along with auto-
mated rationale generation to create natural lan-
guage explanations for a sequence of actions taken
by an RL agent (Nguyen et al., 2022). This work is
closely related to CODEX in that observed agent
behaviors are summarized with text but differs in
its requirement for a large set of human annotations.
CODEX does not require human annotation of ob-
servations in order to generate a text summary of an
episode. Additionally, Nguyen et al. describe a hu-
man’s expectation of why an agent may take a par-
ticular action. This type of human bias works well
in real-world scenarios where humans have a good
understanding of world dynamics. CODEX, in con-
trast, leverages the RL agent’s world model based
understanding of its environment, which enables
CODEX to elucidate deficiencies in the agent’s
understanding of its world.

3 The MiniGrid and StarCraft II Environ-
ments

MiniGrid refers to a collection of simple and easily
configurable grid-world environments designed for
RL research (Chevalier-Boisvert et al., 2018). The
games feature a triangle-shaped player that must
reach the goal in a discrete action space depending
on the type of game. StarCraft II is a real-time strat-
egy game that involves fast paced micro-actions as

2
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well as high-level planning and execution. For this
effort, we use Deepmind’s PySC2 API (Vinyals et
al., 2017) to train models to play two StarCraft II
minigames, which provide simplified environments
and objectives for the agents to learn.

We implement the world model based Dream-
erV2 (Hafner et al., 2021) RL agent to enable visu-
alization of counterfactuals. DreamerV2 uses a Re-
current State Space Model (RSSM) as its dynamics
model to predict transitions. It accepts an encoded
state, zt, represented as a latent feature vector that
encodes observable and inferred state information
and an action, at, as input to predict what state the
world will transition to, zt+1, and the reward, r̂t+1,
that will be received as the output. To reduce the
complexity of the RSSM model, DreamerV2 uses a
paired encoder-decoder Variational Auto-Encoding
(VAE) architecture to learn how to encode raw high-
dimensional observed states, x, as low-dimensional
feature vectors, z. We term the latent representation
z a Dreamer state. The entire DreamerV2 archi-
tecture is trained in a self-supervised manner us-
ing sequences of observational data samples from
the target domain, i.e., episodes, by comparing
the predicted transitions, [x̂t+1, r̂t], with actual ob-
served transitions, [xt+1, rt]. The trained decoder
can project an image of a predicted world-state
from any plausible latent state, z, which is central
to how CODEX visualizes counterfactuals.

4 Framework

CODEX generates natural language tags for Mini-
Grid and StarCraft II based primarily on the loca-
tions (i.e., coordinates) of the entities in the game.
Before we can annotate MiniGrid episodes with
natural language, we need to know which of the
four directions (left, right, up, or down) the player
faces at each timestep. Fortunately, the player’s tri-
angular shape means we can compute its direction
using image moments, i.e., the weighted averages
of the player’s pixel intensities. For a greyscale
image with pixel intensities I(x, y), the raw image
moments Mpq are given by:

Mpq =
∑
x

∑
y

xpyqI(x, y)

Likewise, the central moments µpq are given by:

µpq =
∑
x

∑
y

(x− x̄)p (y − ȳ)q I(x, y)

We can discern whether the player is facing one of
up/down or one of left/right using first- and second-
order central moments:

Θ =
1

2
arctan

(
2µ′

11

µ′
20 − µ′

02

)
where

µ′
20 = µ20/µ00 = M20/M00 − x̄2

µ′
02 = µ02/µ00 = M02/M00 − ȳ2

µ′
11 = µ11/µ00 = M11/M00 − x̄ȳ

Once the entities’ coordinates and player’s direc-
tion are extracted, we generate tags using templates
corresponding to specific states or events. For Min-
iGrid, we use:

The player/goal/key/door is at (x, y).
The player is facing left/right/up/down.
The player turns left/right.
The player moves forward.
The player reached the goal.
The door is open/closed.
The key has been picked up.
The player picks up/drops the key.
The player opens/closes the door.

Because a DreamerV2 world model can sometimes
produce invalid images from a state vector, we in-
clude two additional tags to annotate visual anoma-
lies:

The player is facing a non-cardinal direction.
The state of the door is unknown.

Note that the set of templates includes both state-
driven tags, e.g., “The key is at (x, y).” which ap-
pear at every timestep, and event-driven tags like
“The player picks up the key.” which appear only at
the timestep where a specific action is taken. For
StarCraft II, we use the following:

Marine/Beacon [ID] moves from (x,y) to (x,y).
Beacon/Shard appears at (x,y).
Shard [ID] is collected.
Marine [ID] collects shard [ID].
Marine [ID] moves closer to/farther from
group/shard [ID].

where each entity has a unique, randomly generated
[ID]. Additionally, we use the following group-
related tags:

3



Entity [ID] leaves/joins group [ID].
Entities [IDs] leave/join/form group [ID].
Group [ID] is dissolved.
Group [ID] merges with group [ID].
Group [ID] moves from (x, y) to (x, y).

We now present our summarization pipeline,
constructed from 3 key components: 1) the con-
textualized embeddings language model; 2) the di-
mensionality reduction and clustering algorithms;
and 3) the topic model.

We evaluate three pretrained Transformer-based
language models: BERT-base (Devlin et al.,
2018), BERTweet-base (Nguyen et al., 2020),
and paraphrase-MiniLM-L6-v2 (Reimers and
Gurevych, 2019). We considered BERTweet be-
cause the pre-training data includes short text and
MiniLM because the fine-tuning on paraphrase de-
tection may be advantageous on data with minimal
semantic differences. We then employ the UMAP
algorithm (McInnes et al., 2018) for dimensionality
reduction followed by HDBSCAN (Campello et
al., 2013) for semantic cluster enumeration.

The game-state summary S′ is constructed by
identifying the most important tags in each seman-
tic cluster. This is done by incorporating a Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) topic
model to predict the exemplar tag for each cluster.
LDA’s ngram range parameter is set to the length
of the shortest and longest tags in a cluster. The un-
derlying idea is that entire tags may be selected as
the exemplar for each cluster, avoiding the issue of
hallucinations by being fully extractive. However,
there are cases when LDA predicts a substring to
be the cluster topic because of how ngram range is
set. For instance, “Marine [ID] moves closer to bea-
con ” which is missing the beacon “[ID].” In these
cases, the tag closest to the cluster centroid that
contains the LDA topic substring is selected. In ad-
dition, cosine similarities between the selected tag
vector and the rest of the tag vectors in the cluster
are calculated. If the similarity falls below a thresh-
old of 0.6, the corresponding tag is selected as well.
We re-use the 0.6 parameter setting from previous
semantic similarity work. Presumably, such tags
increase the summary’s informativeness. The se-
lected tags are sorted by step number to produce
the final summary S′.

5 Evaluation Metrics

To the best of our knowledge, datasets with gold
summaries for XRL on gaming environments are

not publicly available, making automatic evalua-
tion a challenge. In order to evaluate clustering
performance on the language model embeddings,
we adopt two metrics given the lack of ground truth
labels.

Silhouette Coefficient. The calculation for a sin-
gle sample s consists of the mean distance between
a sample and all other points in the same cluster a,
and the mean distance between the sample s and
all other points in the next nearest cluster b. It is a
measure of how well defined the clusters are spa-
tially (Rousseeuw, 1987). The metric is defined as:
s = (b− a)÷max(a, b).

Global Cosine Similarity. We take the mean
across all clusters of each cluster’s cosine similarity,
which is computed as the mean cosine similarity be-
tween all cluster vectors and the cluster’s centroid
vector. It is a measure of semantic homogeneity
and density:

1

m

m∑
i=1

 1

n

n∑
j=1

Aj · vc
∥Aj∥ ∥vc∥


i

where m is the number of clusters, n is the number
of cluster vectors, Aj is a given cluster vector, and
vc is the cluster centroid vector.

6 Experiments

To analyze the effectiveness of our CODEX method
from different perspectives, we propose three re-
search questions (RQs) to guide our experiments:

RQ1: Which language model is the most appro-
priate choice for CODEX considering the tradeoffs
between clustering performance and model effi-
ciency in terms of size and inference time?

RQ2: Are the constructed summaries con-
cise and informative while still retaining tempo-
ral and/or entity information from the state-action
space?

RQ3: Does clustering an environment’s Dream-
erV2 game-state latent representations reveal a re-
lationship between the latent and semantic spaces?

6.1 Semantic Clustering Comparison (RQ1)

Experimental Setup. We experiment on 100
MiniGrid episodes (MiniGrid-100) for tags em-
bedding, dimensionality reduction and semantic
clustering to compare the performance of BERT-
base, BERTweet, and MiniLM embeddings on
short text. We do not conduct additional training
or fine-tuning. We log the average amount of time

4



model n neighbors min cluster size clustered (%) sil score global cos sim mean
BERT-base 10 10 98.8 0.916 0.986 0.951
BERTweet 10 10 98.4 0.913 0.993 0.953
MiniLM 10 10 98.6 0.902 0.964 0.933

Table 1: BERT-base, BERTweet, and MiniLM peak performance on the MiniGrid-100 episodes.

it takes for each model to produce episode embed-
dings using an NVIDIA Quadro P1000 GPU card
with 4 GB of memory. The choice of limited hard-
ware is to assess whether CODEX could be used
on edge devices with restricted resources. We un-
dertake a sweep of two key parameters: UMAP’s
n neighbors = {10, 15, 20, 25, 30} and HDB-
SCAN’s min cluster size = {5, 10, 15, 20, 25}.
The remaining parameters are kept fixed: UMAP’s
min dist=0.0, n components=2, metric=cosine,
and n epochs=500; HDBSCAN’s min samples=1
and cluster selection method=leaf. These values
are based on previous work. We compute the per-
centage of tags clustered as well, since HDBSCAN
can identify datapoints as noise. It would be ideal
to have the tags maximally clustered.

Spatial Separation and Semantic Homogene-
ity. To evaluate the semantic clusters, we take
the mean of the Silhouette Coefficient (sil score)
and Global Cosine Similarity (global cos sim) for
each pair of parameter values across 100 episodes
(i.e., n neighbors=10, min cluster size=5 for 100
episodes; n neighbors=10, min cluster size=10
for 100 episodes, etc.). Table 1 reports the best
performing parameter values for each model. Full
results are in Appendix A.

All three models perform the best when
n neighbors=10 and min cluster size=10 on
MiniGrid-100. The average number of tags clus-
tered across all 100 episodes is in the range of
98.4-98.8%. BERTweet has the highest sil score
and global cos sim mean at 0.953, although BERT-
base and MiniLM exhibit comparable performance
at 0.951 and 0.933, respectively.

Efficiency. We consider model size and speed in
the selection process as well. Table 2 shows model
sizes along with the average amount of time (secs.)
each model takes to generate episode embeddings
when run on a single GPU.

At 23M parameters, MiniLM produces episode
embeddings in 0.059 seconds on average, across
100 episodes that contain a total of 15,392 natu-
ral language tags. This is significantly faster than
the much larger BERT-base and BERTweet mod-
els. Moreover, we observe that the MiniLM se-

model # params dim. # epi. mean
BERT-base 109M 768 100 3.19
BERTweet 135M 768 100 0.337
MiniLM 23M 384 100 0.059

Table 2: Model sizes, embed dimensions, and mean
generation times (secs.) on the MiniGrid-100 episodes.

mantic clusters are dense and well-separated (see
Figure 2).

We choose MiniLM for further experimentation
to answer RQ2 and RQ3 given the smaller size,
speed, and comparable clustering performance,
while taking into account the environmental im-
pact, financial cost, and other pitfalls associated
with Large Language Models (see Bender et al.,
2021; Wei et al., 2022; and Thompson et al., 2022
for discussions).

6.2 Summary Analysis (RQ2)

Since the final summary is crucial to understanding
agent behavior, we conduct an exploratory quali-
tative analysis to study: conciseness – do the sum-
maries possess a sufficient number of tags that are
interpretable by humans without redundancy? in-
formativeness – do the summaries include all rele-
vant information from the game-state space?

MiniGrid-100. We visually inspect the semantic
clusters and summaries from each MiniGrid-100
episode generated by the MiniLM >> UMAP >>
HDBSCAN pipeline followed by LDA topic extrac-
tion. The summaries are constructed as outlined
in §4. Figure 2 is indicative of what we observe
for the MiniGrid episodes. Labels are shown above
each cluster with “x” marking the centroids.

As seen in the legend at the top left, episode
8 has 145 total event+state driven tags. The 9
enumerated clusters are dense and well-separated
when min cluster size=10 and min samples=1
with 100% of the tags clustered. The evalua-
tion measurements approach a value of 1.0 with
sil score=0.966 and global cos sim=0.979. The
inset summary is shown to the right. Each line
is formatted as: [tag] [cluster ID]. The asterisks
around *[cluster ID]* indicate the tag is selected

5



Figure 2: Semantic clusters and summary for MiniGrid
episode 8.

because it falls below the 0.6 summary threshold
as explained in §4. The summary consists of 11
total tags in this case, resulting in a low compres-
sion rate of (11 ÷ 145) = 0.076. Interestingly,
clusters 0 and 7 are far apart in the UMAP 2-dim.
projection even though the clustered tags differ by
1 word, i.e., “The door is closed.” [cluster 0] vs.
“The door is open.” [cluster 7]. We hypothesize that
MiniLM’s fine-tuning on a paraphrase detection
task enables it to generate separable embeddings
when the semantic distinctions are minimal. The
summary captures the key events during the game-
state episode, such as “The key has been picked
up.” [cluster 5], “The door is open.” [cluster 7], and
“The player reached the goal.” *[cluster 1]*.

StarCraft II. We visually inspect the seman-
tic clusters and summaries from 100 randomly
selected StarCraft II episodes out of 5,000 total
episodes. These episodes have a significantly larger
set of event-driven tags per episode compared to
MiniGrid. Step numbers are included in the vec-
tor representations, designating when the events
begin and end to consider the effect of providing
the pipeline with temporal information. Each tag is
prefixed with a timestamp denoting the starting and
ending steps with “t1 -- t2”. For instance, for the
tag “5 -- 8 Marine 4299161601 moves farther from
shard 4299423745”, “5” is when the event starts
(Step 5) and “8” is when it ends (Step 8).

Figure 4 in Appendix B illustrates what we typ-
ically observe in the StarCraft II episodes. We
adjust min cluster size=20 and sum thresh=0.7,
since the number of tags is approximately 3x
larger. Episode 4 (Figure 4) has 530 event-driven
tags that are enumerated as 12 clusters when
min cluster size=20. 93.58% are clustered with
tags marked as noise denoted in gray. The Sil-

Figure 3: Latent representation clusters for MiniGrid
episode 8.

houette Coefficient is 0.605, reflecting less cluster
separation compared to MiniGrid. One possible
reason is that the sequences of digits that make up
the entity IDs place the vector representations close
in 2-dim. space, although HDBSCAN predicts sep-
arate clusters.

It is notable that the clusters capture temporal
as well as entity information. For example, “13
-- 14 Marine 4298899457 moves closer to shard
4303880193” [cluster 6] clusters separately from
“45 -- 48 Marine 4298899457 moves closer to shard
4303880193” [cluster 9] when the only differences
are the step numbers. In fact, we find that a cluster
may have tags from the first half of the episode,
which is reflected by the step numbers, with iden-
tical tags in another cluster from the second half.
Consequently, the constructed summary includes
exemplars from both halves of the episode. More-
over, we observe similar behavior when the differ-
entiator is an entity ID. In terms of summary length,
Figure 4 shows that the compression rate is low at
(15÷ 530) = 0.028.

We visualize the clusters and summary from the
same episode with min cluster size=10 (Figure 5
in Appendix B). The summary is longer and more
fine-grained due to the enumeration of more clus-
ters. [Cluster 0] at the bottom center is particularly
interesting: it contains tags related to group be-
havior – “Entities 4299161601, 4298899457 form
group 1”, “Group 1 is dissolved”, “Group 2 is
dissolved”, “Group 2 moves from (122, 128) to
(110, 128)”, “Group 3 is dissolved”, etc. While
marked as noise when min cluster size=20 (Fig-
ure 4 at bottom center), the tags are clustered be-
cause the number of tags has met the threshold
of min cluster size=10 in Figure 5. We consider
this significant because rare but important tags can

6



be uncovered by adjusting min cluster size. Thus,
users could adjust the parameters min cluster size
and sum thresh along a sliding scale from course
to fine-grained semantic clustering and summariza-
tion of an RL agent’s behavior.

6.3 Game-State Latent Representations (RQ3)

We address RQ3 by clustering the DreamerV2
discrete+continuous latent representations from
MiniGrid and StarCraft II with the UMAP >>
HDBSCAN piece of the pipeline. The 2048-
dimensional, stepwise latent representations are
extracted as described in §3 (i.e., the z Dreamer
states). Figure 3 shows latent clusters from
MiniGrid-100 episode 8. These results are what we
typically observe for MiniGrid episodes.

We find that lowering min cluster size=5 pro-
duces 3 clusters with 100% of the 24 latent rep-
resentations clustered. We see that Step 14 is the
point in which “The door is open.” In the 2-dim.
space, Step 14 operates as a transition point be-
tween its cluster and the next. In our careful in-
spection of the latent clusters from the MiniGrid
episodes, we can surmise when the door opens by
visually identifying the transition point. Moreover,
we can predict when “The key is picked up.” by
identifying the last point between the first and sec-
ond clusters (Step 5). The datapoints and their
clusters form an arc from the bottom left to the top
right for episode 8, which is a visual interpretation
of the episode’s progression through time.

In terms of StarCraft II, HDBSCAN did not clus-
ter the latent representations, marking all points as
noise for every episode. We hypothesize that Mini-
Grid’s longer model training and lower-complexity
environment are possible reasons why HDBSCAN
successfully clusters the latent representations. An
interesting future direction is exploring how much
training is necessary to achieve latent representa-
tion clustering for a variety of environment com-
plexities.

7 Discussion

In CODEX, we construct game-state summaries
by identifying centroid-conditioned LDA topic ex-
emplars for each semantic cluster. We choose this
design over an abstractive summarization approach
so that CODEX is an unsupervised method that
is fully extractive in nature. We believe that this
design choice contributes to user trust. Moreover,
the finding that the MiniGrid latent representations

can be clustered to reveal important episodic events
prompts the scientific community to consider new
research questions about the nature of the RL la-
tent space. Ongoing research is investigating how
to present factual and counterfactual summaries,
show latent cluster visualizations, and allow for
intuitive manipulation of the min cluster size and
sum thresh parameters by users, which opens the
door to understanding what an RL agent expects
will happen vs. what would have happened had a
different decision been made.

8 Conclusion

CODEX produces text-based summaries that pro-
vide representations of factuals and counterfac-
tuals. These summaries could be leveraged to
summarize collections of counterfactuals, perhaps
with hierarchical summarization techniques. Other
venues for future work include extending CODEX
to additional semantically diverse environments,
exploring the limits of CODEX with respect to
episode length and state complexity, extracting
more information from the latent space or increas-
ing CODEX’s efficiency by, e.g., automating state
tagging with the latest computer vision techniques.

7



A Full Results on the MiniGrid-100 Episodes

n neighbors min cluster clustered (%) sil score global cos sim mean
10 5 93.8 0.747 0.992 0.870
10 10 98.8 0.916 0.986 0.951
10 15 91.7 0.844 0.968 0.906
10 20 88.6 0.737 0.939 0.838
10 25 84.0 0.638 0.904 0.771
15 5 92.1 0.688 0.991 0.839
15 10 98.8 0.883 0.982 0.932
15 15 99.0 0.912 0.975 0.943
15 20 94.0 0.834 0.950 0.892
15 25 90.6 0.724 0.914 0.819
20 5 89.7 0.654 0.989 0.822
20 10 98.2 0.844 0.981 0.913
20 15 99.4 0.887 0.972 0.930
20 20 98.6 0.900 0.960 0.930
20 25 92.8 0.818 0.937 0.877
25 5 89.5 0.623 0.989 0.806
25 10 97.6 0.802 0.977 0.889
25 15 99.0 0.875 0.969 0.922
25 20 99.2 0.896 0.955 0.925
25 25 97.4 0.871 0.941 0.906
30 5 87.3 0.620 0.988 0.804
30 10 97.1 0.796 0.976 0.886
30 15 98.6 0.881 0.967 0.924
30 20 98.9 0.904 0.954 0.929
30 25 96.3 0.884 0.939 0.912

Table 3: BERT-base performance on the MiniGrid-100 episodes.
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n neighbors min cluster clustered (%) sil score global cos sim mean
10 5 93.8 0.764 0.996 0.880
10 10 98.4 0.913 0.993 0.953
10 15 92.7 0.830 0.983 0.906
10 20 89.1 0.724 0.968 0.846
10 25 87.2 0.620 0.950 0.785
15 5 93.1 0.720 0.996 0.858
15 10 98.3 0.902 0.993 0.947
15 15 97.8 0.882 0.987 0.934
15 20 91.3 0.779 0.972 0.876
15 25 89.5 0.664 0.953 0.809
20 5 90.7 0.705 0.995 0.850
20 10 98.5 0.911 0.992 0.951
20 15 96.9 0.901 0.987 0.944
20 20 94.3 0.828 0.974 0.901
20 25 89.9 0.718 0.954 0.836
25 5 89.3 0.691 0.995 0.843
25 10 98.6 0.909 0.991 0.950
25 15 97.4 0.904 0.986 0.945
25 20 93.9 0.845 0.975 0.910
25 25 90.4 0.766 0.962 0.864
30 5 88.9 0.687 0.995 0.841
30 10 99.1 0.892 0.991 0.942
30 15 98.6 0.900 0.987 0.943
30 20 97.1 0.830 0.975 0.902
30 25 92.9 0.754 0.959 0.857

Table 4: BERTweet performance on the MiniGrid-100 episodes.
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n neighbors min cluster clustered (%) sil score global cos sim mean
10 5 93.1 0.719 0.983 0.851
10 10 98.6 0.902 0.964 0.933
10 15 93.8 0.863 0.928 0.895
10 20 89.4 0.793 0.887 0.840
10 25 84.6 0.696 0.832 0.764
15 5 91.8 0.670 0.976 0.823
15 10 99.1 0.871 0.957 0.914
15 15 98.7 0.905 0.940 0.923
15 20 94.5 0.842 0.905 0.874
15 25 89.2 0.742 0.845 0.794
20 5 89.8 0.640 0.971 0.805
20 10 99.2 0.870 0.953 0.911
20 15 98.4 0.901 0.938 0.919
20 20 96.1 0.881 0.910 0.895
20 25 92.5 0.783 0.856 0.820
25 5 88.2 0.624 0.970 0.797
25 10 98.7 0.844 0.951 0.898
25 15 98.4 0.864 0.934 0.899
25 20 95.7 0.850 0.905 0.877
25 25 94.9 0.837 0.866 0.852
30 5 87.5 0.620 0.968 0.794
30 10 98.5 0.825 0.948 0.887
30 15 97.6 0.860 0.931 0.895
30 20 95.8 0.851 0.897 0.874
30 25 94.4 0.833 0.866 0.850

Table 5: MiniLM performance on the MiniGrid-100 episodes.
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B StarCraft II Example Semantic Clusters and Summaries

Figure 4: Semantic clusters and summary for StarCraft II episode 4 (min cluster size=20).
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Figure 5: Semantic clusters and summary for StarCraft II episode 4 (min cluster size=10).
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Ethical Statement

Explainable Reinforcement Learning, as well as
explainability more broadly, raises ethical concerns
when applied to real-world problems. The main
issue is the explanations could be used by malicious
actors to manipulate AI systems, which would be
especially pernicious for a field such as robotics.

For instance, consider a scenario where a robotic
agent is sent to retrieve an apple as quickly as pos-
sible. There are two paths to the apple, one that is
shorter and uses a set of stairs and one that is longer
and uses an elevator. Suppose the agent chooses
to retrieve the apple using the longer elevator path.
A typical user may find this to be an unexpected
choice since the longer path should take more time
to traverse. By reviewing the counterfactual ex-
ample, one can observe what the agent expects to
happen if it chooses the shorter stair path. In this
case, the agent expects to start a slow descent be-
fore falling down the stairs, finding itself unable to
right itself and continue.

Given the above scenario, a malicious actor with
access to the factual and counterfactuals would
know that at least one of the counterfactuals causes
a negative outcome. Thus, directing the robotic
agent to choose the shorter path would result in
its failure. This outcome would have far reaching
consequences if the robotic agent is employed in
a healthcare setting or in an area where dangerous
materials are being handled. It is crucial to continue
discussions on ways to mitigate this situation.
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