
Abstract

FISSURE  (Frequency  Independent  SDR-based
Signal Understanding and Reverse Engineering) is
a  newly  released  open-source  RF  and  reverse
engineering framework designed for all skill levels
with hooks for signal detection and classification,
protocol  discovery,  attack  execution,  IQ
manipulation,  vulnerability  analysis,  automation,
and  AI/ML.  This  paper  introduces  the  principles
behind  FISSURE and  provides  a  synopsis  of  its
components.  Additionally,  the  extent  of  GNU
Radio integration within the framework is detailed
along with a projection of future directions for the
project. 

1. Introduction

RF  devices  are  everywhere  and  provide  access  to  cyber
physical  systems,  connecting  the  digital  world  to  the
physical  environment in  the form of:  vehicles,  unmanned
aerial systems, communications networks, industrial control
systems, medical devices, weapon systems, etc. In today’s
world  the  “smart”  label  means  connected  and  these
connections  reveal  additional  attack  vectors.  This
proliferation  of  new  potential  pathways  and  exposure  to
vulnerabilities  from  upgrades  to  various  technologies  is
producing an ever-growing demand for combined RF and
Cyber solutions across wide-ranging applications. 

There is a common vulnerability analysis process for RF-
enabled systems that cybersecurity experts repeat frequently
when  working  with  new devices  and  RF  protocols.  This
includes detecting the presence of RF energy, understanding
the  characteristics  of  the  signal,  collecting  and  analyzing
samples,  developing  transmit  and/or  injection  techniques,
crafting custom payloads or messages, and investigating the
effects complex payloads can impose on targets. There are a
series  of  challenges  in  this  process  which  can  provide  a
steep learning curve for most people – whether it is battling
issues  with  software  dependencies,  software  updates,
hardware  compatibility,  configuration,  or  re-creating  past
work. 

FISSURE is  an  open-source  RF  and  reverse  engineering
framework  designed  to  speed  up  the  characterization  of

signals  and  the  identification  of  vulnerabilities  in  RF
protocols,  waveforms,  and  devices.  It  is  a  solution  to
address  many of  the  challenges  that  come from working
with known and unknown signals/protocols, and also serves
as a means to publicly consolidate existing RF solutions that
get  repeated  many times over  by researchers,  developers,
and hobbyists. 

FISSURE has grown considerably from its beginnings as a
prototype  which  demonstrated  aspects  of  a  meticulously
planned  out   modular  framework  that  enables  rapid  RF
device  assessment  while  simplifying  development  and
integration  of  third-party  tools  and  hardware.  Then
following  years  of  investment  by  AIS  through  internal
research and development,  the prototype grew into an in-
house laboratory tool that acted as a workflow enabler with
a scripted installation, tool storage, library development, and
additional  hardware  support.  Now,  as  an  open-source
project, FISSURE consolidates all-things RF in the form of
software modules, radios, protocol information, signal data,
scripts,  flow  graphs,  reference  material,  and  third-party
tools. It offers a means to prototype techniques and acts as a
standardized  interface  to  interact  with  other  open-source
tools and one-off solutions.

FISSURE  is  intended  for  both  experts  and  beginners.  It
offers  an  out-of-the-box,  pain-free  software  installer  built
with transparency. It is written mostly in Python and PyQt
with support for legacy systems. Users can edit the pieces
on their own to expand functionality and use it in everyday
testing.  Helpful  guides  exist  to  make  it  easier  to  interact
with  the  framework  and  understand  the  different  RF
technologies contained therein. FISSURE seeks to draw its
strength  from  the  community  through  feedback  and
contributions and have a future role in education, research,
and improving everyday work.

1.1. Principles

For  an  RF  framework  to  be  truly  valuable  it  needs  to
encompass several technologies and capabilities and always
be in a  state  of  expansion.  It  must be flexible enough to
support new features and the rapid integration of the latest
tools and algorithms to keep up with the pace of innovation.
FISSURE  will  be  constantly  evolving  to  assist  as  many
people  as  possible,  but  it  will  also  try  to  adhere  to  the
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founding  principles  that  make  it  technically  sound  and
valuable to users. 

The core technical principles of FISSURE are to help speed
up signal characterization and help with the identification of
vulnerabilities  in  protocols  and  devices.  That  concept  is
very wide-ranging and it allows for simultaneous maturation
of other surrounding topics. For example, FISSURE can be
a  testbed  for  AI/ML and  automation  in  several  technical
areas  including  signal  detection,  feature  extraction,
protocol/emitter  classification,  demodulation,  pattern
recognition,  data  analysis,  batch  processing,  vulnerability
analysis,  and  more.  However,  this  comes  with  the
understanding that the technical foundation needs to exist
before automation can have a larger role. 

The  hardware  considerations  for  FISSURE  must  allow
accessibility for the average user while having the potential
for expansion to improve performance. This means utilizing
commercial  software-defined  radios  (SDRs)  and  other
commonplace hardware, but also maintaining the ability to
support custom radios and standards such as VITA 49. The
ability  to  pass  data  and  commands  over  a  network  and
between  software  components  is  essential  to  offload
processing,  operate  out  of  more  than  one  geographic
location, and to support additional platforms and hardware. 

FISSURE is meant to be a framework for everyone and that
requires  it  to  have  footholds  in  both  simplicity  and
complexity. The simple aspects are the reliable installation,
instant  access  to  commonly  performed  operations,  easily
modified code, helpful visualizations, support for the latest
and legacy, examples and guides on how to do things, and
the  consolidation  of  tools  and  techniques.  The  complex
aspects are the development of cutting-edge techniques and
the integration of advanced solutions. The framework will
never fully be complete as there will always be pieces that
can be improved or added over time. 

1.2. Comparisons to Similar Products

Signal  characterization  and  vulnerability  identification
challenges  have  been  around  for  a  long  time.  Presently,
there  are  a  large  number  of  concurrent  solutions  being
developed  by  an  unimaginable  number  of  entities  spread
across  the globe to address modern challenges.  FISSURE
may  share  several  technical  components  found  in  such
solutions  but  it  also  contains  a  unique  combination  of
elements that set it apart. 

The biggest selling point that distinguishes FISSURE from
other very  capable products  is  that  FISSURE is  free  and
open. It supports modifications to the source code and lets
users  work  with  affordable  commercial  off-the-shelf
(COTS) hardware.  It  can  also  render  an  instant  sense  of
familiarity  by  providing  quick  access  to  third-party  tools

and allow users to explore software for similar technologies
of  interest  to  which  they  may  have  previously  been
unawares.  FISSURE  gets  a  lot  of  its  power  by  not
reinventing  the  wheel  and  supports  the  use  of  existing
applications where possible. 

FISSURE  is  not  a  virtual  machine  (VM)  or  a  dedicated
operating system. It contains all the commands for installing
a large amount of third-party tools tested against multiple
Linux operating systems. While FISSURE avoids some of
the  hardware/processing  limitations  and  other  headaches
associated with VMs, it  does not create a sandbox during
installation  either.  As  a  result,  there  can  be  compatibility
risks with existing software already installed on a machine
which may cause unexpected errors. However, the installer
is a nearly pain-free method for staging computers and can
be easily modified to add or subtract software items.

The  extreme  amount  of  flexibility  and  modularity  that
FISSURE  contains  allows  it  to  encompass  such  a  wide
variety of applications. This variety along with the Python
and  GNU  Radio  code  base  make  it  a  great  option  for
introducing users to several programming and RF concepts.
The  user  dashboard  with  its  visualizations  and  lessons
reduce the otherwise steep learning curve. The project also
has the added bonus of being managed by a company that
has  developers  working  on  the  forefront  of  cybersecurity
and in touch with a number of technical  and professional
communities. 

2. Framework Components and Features

FISSURE  is  comprised  of  dedicated  Python  components
communicating to each other over a central hub as shown in
Figure  1  (the  central  hub  is  nicknamed  “HIPRFISR”
because it is not a real hypervisor in the traditional sense).
The  primary  means  for  passing  messages  between
components  is  performed  via  the  open-source  universal
messaging  library  ZeroMQ  (ZMQ).  Messages  can  be
assigned source identifiers and categories such as heartbeats,
status,  or commands.  Each message has  a YAML schema
that  assigns  the  number  of  expected  parameters  and  the
names  of  callback  functions  that  get  executed  upon
reception.  Each component  establishes a  ZMQ DEALER-
DEALER  pair  to  the  central  hub  for  issuing/receiving
commands. Additionally, each component has a ZMQ PUB
socket and any number of SUB sockets for issuing/receiving
one-to-many status messages.

The  central  hub  receives  commands  from  the  user
dashboard,  coordinates  actions  to  the  other  components,
manages automation, and contains functions for editing the
main library. Additional dedicated software components that
perform  new features can easily be added to the framework
if 1) there are clear inputs and outputs that can  be defined
and 2) the possibility exists to create a simple wrapper that



manages the ZMQ connections. 

The user  dashboard consists  of  several  tabs,  menu items,
and  buttons  to  quickly  assign  hardware  (SDRs,  Wi-Fi
adapters,  IoT analyzers,  etc.)  to a  particular  functionality.
Interaction with the user dashboard is the singular means to
control  the  functionality  within  the  tabs  and  to  initiate
commands to each component. Within the dashboard, there
are  menu  items  for  the  following:  launching  standalone
GNU Radio flow graphs that are not tied to the rest of the
software  in  the  framework;  quickly  accessing  third-party
and  online  tools  organized  by  protocol  or  application;
lessons for learning more about relevant technologies; and
help pages for operation, development,  protocol reference
material, calculators, and hardware instructions.

The  dashboard  has  utilities  for  modifying  the  FISSURE
library (YAML) – which contains protocol definitions, flow
graph information, and signal archive metadata. There are
utilities  for  browsing;  searching;  uploading  images;  and
adding/removing modulation types, packet types, signals of
interest,  statistics,  demodulation flow graphs,  and attacks.
The library is constructed to easily support the addition of
individual plugins or proprietary add-ons to segregate data
sensitive features from the public repository.

2.1. Target Signal Identification

The  Target  Signal  Identification  (TSI)  component  is
intended  to  run  four  subcomponents:  a  detector,  a  signal
conditioner, a feature extractor, and a classifier. The purpose
of the TSI component is to detect signals of interest (SOIs),

isolate  and condition signals  for  detailed  analysis,  extract
signal  characteristics  for  protocol  and/or  emitter
classification, and apply user-specified AI/ML classification
techniques.  The  TSI  component  will  result  in  additional
knowledge  of  the  surrounding  RF  environment  and  pass
potential SOIs to the Protocol Discovery component. 

As of Fall 2022, the TSI component only contains a slow-
scanning detector which reports back power, frequency, and
time values for signals above a power threshold (Figure 2).

2.2. Protocol Discovery

The  Protocol  Discovery  component  is  responsible  for
identifying  and  reversing  RF  protocols  to  help  extract
meaningful  data from unknown signals.  It  is  designed to:
accept  SOI  information,  iterate  flow  graphs  to  perform
recursive  demodulation  techniques,  deduce  protocol
methods,  assign  confidence  levels,  analyze  a  bitstream,
calculate  cyclic  redundancy  check  (CRC)  polynomials,
create custom Wireshark dissectors, and automatically add
protocol information to the FISSURE library.

As of Fall 2022, Protocol Discovery is an entirely manual
process with no recursive demodulation techniques in place
that  work  towards  producing  a  bitstream.  The  bit  slicing
capabilities are best suited for fixed-length messages.  The
data  viewer  can  perform  bit-wise  operations,  convert
between binary and hex, view ASCII text, and compare data
against known packet types already present in the library.
The  custom  Lua  Wireshark  dissectors  are  designed  to
monitor for individual packet types assigned to a protocol

Figure 1: Dedicated FISSURE Components

Figure 2: TSI Wideband Detector



that  are  inbound  on  designated  UDP  ports  (the  data  is
produced  from  demodulation  flow  graphs).  The  CRC
calculator applies common CRC algorithms to data and can
deduce certain polynomials from two messages with known
CRC values.

2.3. Attacks

The  Flow  Graph/Script  Executor  component  runs  flow
graphs  or  Python  scripts  to  perform  single-stage  attacks,
multi-stage  attacks,  fuzzing  attacks,  IQ  recording  and
playback,  live  signal  inspection/analysis,  and  transmit
playlists of signal  data constructed with files  downloaded
from  an  online  archive.  Attacks  are  organized  by  RF
protocol,  modulation  type,  hardware,  and  type  (denial  of
service,  jamming,  sniffing/spoofing,  probe  attacks,
installation  of  malware,  misuse  of  resources,  file).  While
FISSURE is intended for wireless applications, attacks can
be  performed  against  wired  application  or  any  network
protocol in general.

Single-stage attacks can be in the form of Python2/Python3
scripts and GNU radio flow graphs with/without GUIs. The
Python script attacks require a simple header to be added to
the file that specifies the default values (Figure 3) for the
attack variables. Python scripts and flow graphs with GUIs
run as-is and do not accept updates from the dashboard. The
flow  graph  attacks  that  do  not  utilize  GUIs  can  change
attack variable values before and during runtime (see GNU
Radio Integration). 

Multi-stage attacks string together  a  series of single-stage
attacks that  get  run on repeat  for  a  set  duration.  Fuzzing
attacks can be in the form of data field fuzzing or flow graph
variable  fuzzing.  Data  field  fuzzing  allows  the  user  to
specify a particular packet type to fuzz and choose which
fields to fuzz (sequentially or randomly) and the ranges for
each field. Messages are generated at a configurable interval
and  the  CRCs are  automatically  calculated  for  each  new
message. Flow graph variable fuzzing allows a user to load
a flow graph and choose which variable to fuzz.

As of Fall 2022, attacks are not evenly distributed across all
possible  hardware  types.  Certain  attacks  are  hardware-
specific and require modification to GNU Radio blocks to
replicate intended behavior. Not all protocols have fuzzing
capabilities. 

2.4. IQ Manipulation

The IQ Data tab contains several functions for working with
IQ data (Figure 4). There are live inspection flow graphs for
manual inspection; capabilities for record and playback; a
data  viewer  with  plot,  zoom,  pan,  save,  and  measure
capabilities;  data  modification  capabilities  to  include:
cropping,  converting  between  data  types,  appending,
applying  timeslots,  overlapping  signals,  resampling,
normalizing; and some analysis capabilities in the form of
magnitude  plots,  instantaneous  frequency,  spectrogram,
FFT, moving average filters, Morse code deciphering, and
polar plotting. 

Figure 3: Single-Stage Attack Example Figure 4: IQ Manipulation



2.5. Online Signal Archive

AIS has begun storing IQ signal data to an online signal
archive located at fissure.ainfosec.com to reduce the size of
the GitHub repository and to not force extraneous amounts
of data upon users. The FISSURE library holds the metadata
for  each Archive file  and the values  can be viewed right
from  the  user  dashboard.  The  user  has  the  ability  to
download specific files of interest from the Internet with a
single  click.  The  Archive  tab  contains  replay  capabilities
which allows users to create playlists to simulate traffic and
test systems. This is also a convenient way to test the front-
end  signal  components  (TSI,  Protocol  Discovery)  for
FISSURE.

2.6. Packet Crafting

Custom packet crafting capabilities exist for protocols with
packet types entered into the FISSURE library. This allows
users to browse sample messages, change field values at the
bit-level,  recalculate  CRC  values,  construct  sequences  of
messages,  and save data to a file.  The Packet Crafter tab
also  includes  Scapy  integration  for  transmitting  different
types of 802.11 packets while in monitor mode.

2.7. Third-Party Tools

The  third-party  tools  installed  as  part  of  FISSURE  are
mostly  self-contained  as  menu  items  in  the  form  of
standalone  flow  graphs,  tools,  and  help  items.  There  are
some GNU Radio out-of-tree modules and a few other tools
that can be found in Protocol Discovery and some attacks.
The standalone flow graphs are favorites that can be quickly
accessed and are separate from the rest of FISSURE. They
will  retain  their  last  state  upon reloading  FISSURE.  The
tools  and help menu items  will  launch programs;  open  a
terminal  with  example  commands;  or  open  a  browser  to
reference material such as maps, calculators, and databases.

2.8. Lessons

Lessons  and  tutorials  for  interacting  with  various  RF
technologies  and  tools  within  FISSURE  are  provided  to
users as Markdown/HTML pages. The goal is to teach new
concepts  and  help  refresh  users  on  how  the  technology
works by always having a set of steps available that can be
utilized for quick reference. This is an area that is expected
to  grow  as  FISSURE  expands  its  role  in  education  and
receives  feedback  from the  community.  As  of  Fall  2022,
topics include: OpenBTS, Lua dissectors, Sound eXchange,
ESP boards, radiosonde tracking, RFID, data types, custom
GNU Radio blocks,  TPMS, ham radio exams,  and  Wi-Fi
tools.

3. GNU Radio Integration

GNU Radio flow graphs are found throughout FISSURE in
the  form  of  detection,  inspection,  protocol  discovery,
demodulation,  sniffing,  recording,  replay,  attacks,  fuzzing,
and  third-party  tools.  They  utilize  data  and  interact  with
FISSURE  components  in  many  different  ways  as  listed
below:

• The  wideband  detector  flow  graphs  launch  and
then  accept  commands  to  update  parameters  like
frequency, sample rate,  FFT size,  threshold level,
and gain. They return power, frequency, and time
values  periodically  over  the  network  via  a  ZMQ
PUB socket. 

• The  inspection  flow  graphs  contain  GUIs  with
widgets for changing variable values within blocks
that contain callbacks. As of Fall 2022, the variable
values  do  not  get  modified  before  runtime  so
parameters like serial number are not utilized.

• The Protocol Discovery component currently only
demodulates a limited set of protocols and packet
types. The ones that do exist produce a bitstream
that gets forwarded over the network to a circular
buffer  for  further  analysis.  These  demodulation
flow graphs will act as one of the final stages in a
recursive demodulation process.

• Sniffing  flow  graphs  tap  into  the  demodulation
flow  graphs  (via  streams,  tagged  streams,  and
messages/PDUs) and pipe the data into Wireshark
for  live  viewing  of  messages  and  recording  of
traffic sessions. 

• The IQ Data tab contains recording flow graphs for
quickly  saving  data  to  a  file  and  viewing  the
contents instantly. It also has the ability to record
several  files  at  a  set  interval.  This  is  useful  for
hands-free  recording  operations.  Playback  flow
graphs will replay a file a single time or on repeat.

• The archive replay flow graphs load data into a file
source and are run individually as part of a playlist
that has the option to repeat indefinitely. 

• Attack flow graphs can be run with or without a
GUI.  Flow  graphs  without  GUIs  can  have  their
variable values changed before and during runtime.

• Fuzzing flow graphs contain a special fuzzer block
that  accepts  the  parameters  from  the  user
dashboard  and  reads  in  the  protocol  information
from the FISSURE library file to adjust fields and
calculate  CRC  values.  The  output  of  the  fuzzer
block is a message that gets updated at  a regular
interval  that  can  be  fed  into  other
transmit/modulation blocks.

• The ability to fuzz individual GNU Radio variables
for blocks with callbacks is built into the Attacks
tab. 

• Third-party flow graphs/tools  are typically  in the



form  of  standalone  flow  graphs  and  compiled
Python files that get run from a terminal.

Running flow graphs with and without GUIs from Python is
an  important  distinction  due  to  the  way  in  which  the
components control the flow graphs. Flow graphs without
GUIs are first loaded in Python using the “__import__()”
command. The text data for the variable default values is
modified  prior  to  issuing  a  “compile()” command  and
loading the altered result as a new module. The new flow
graph is then loaded with the “getattr()” function and used
with the conventional GNU Radio “.start()”, “.wait()”, and
“.stop()” commands. Changing flow graph variables during
runtime is done using the combination of  “getattr()” and
“set_<variable>” calls.  These steps cannot be reproduced
without  error  when flow graphs  are  compiled  with  GUIs
enabled. The default  values for these flow graphs are not
modified and changes during runtime are done through the
callbacks from the GUI elements. 

As of Fall 2022, FISSURE is divided into three branches to
reduce code redundancy and better support legacy versions
of  Python,  GNU  Radio,  and  PyQt.  These  branches  are
Python2_maint-3.7,  Python3_maint-3.8,  and  Python3_
maint-3.10.  The  out-of-tree  modules  installed  with
FISSURE are in the form of Git submodules that get cloned
directly from online repositories. These modules will need
to be monitored in case branch names change or updates
change the functionality in unexpected ways. 

6. Conclusion and Future Work

FISSURE  is  a  new  framework  that  has  a  good  starting
foundation which offers several features that can be utilized
as-is by many types of users. With further development and
support from the community, FISSURE will expand beyond
a few examples of what can be done with an RF framework
into  a  very  extensive  tool  for  working  with  RF  and
performing reverse engineering techniques. 

As an open-source project, showing interest in FISSURE is
vital  to  its  success.  By  starring  the  project  on  GitHub,
joining  the  Discord  server,  following  on  Twitter,  it  will
make  for  an  easier  sell  to  internal/external  customers.
Contacting the developers,  encouraging collaboration, and
submitting contributions is sure way to speed up FISSURE
development and aid your own projects at the same time. 

Growing  a  strong  user  community  will  strengthen  the
software  and  expand  the  breadth  of  technologies  it
encompasses. Feedback is vital for steering the direction of
the  project  and  helping  others  who  share  similar
experiences.  The  developers  will  always  welcome
suggestions  for  software  tools,  hardware  suggestions,  IQ
analysis algorithms, attacks scripts, new operating systems,

bug fixes, and any other improvements.

6.1. Moving Forward

The  project  will  continue  to  encourage  community
collaboration,  expand  capabilities,  and  push  for  funding
avenues to expedite development. The initial phase, which is
still  underway,  intends to make the software as  open and
transparent  as  possible  by  supporting  more  types  of
hardware;  finding  better  ways  of  utilizing  GNU  Radio;
supporting  more  operating  systems;  producing  a  Docker
alternative;  integrating  popular  tools;  and  releasing
documentation for  user  guides,  instructional  material,  and
APIs.

Short-term  development  will  focus  on  improving  the
existing  software  (bugs,  cleaning  the  code,  testing  more
SDRs, etc.) and expanding base capabilities that will round
out the framework and allow for task automation and the
introduction  of  machine  learning  techniques.  This  also
includes  the  creation  of  additional  lesson  material  and
trialing  it  in  classroom  environments  such  as  labs,  high
schools, colleges, clubs, workshops, and RF/Cyber/Hacking
events. 

The biggest holes that  need to be filled are related to the
following topics:  integrated fast-scanning signal  detection,
signal  conditioning,  feature  extraction,  protocol/emitter
classification,  recursive  demodulation  using  flow  graphs,
protocol  identification  using  digital  data,  vulnerability
analysis  against  targets  of  interest,  IQ  measurement  and
filtering,  and  building  up  the  signal  archive  using  a
standardized metadata format like SigMF.

Long-term  goals  include  establishing  more  ties  with
education to promote the combined realms of RF and Cyber,
exposing cutting-edge solutions from experts, expanding to
more  RF  protocols  and  applications,  improving
visualization, comparing machine learning techniques, and
advancing  towards  a  generic  sensor  node  deployment
scheme to operate from multiple geographic locations.


